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ABSTRACT

Optimum control theory is applied to develop a guidance law for homing
missiles. An existing, closed form, general solution of the "minimum error
regulator" problem is applied to a previously solved problem which uses a very
simple plant model, in order to verify its applicability. The solution method is
then applied to a system that includes autopilot lag, and in this case the optimum
law is shown to differ from proportional navigation.
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Section I. INTRODUCTION

The technique of proportional navigation has been found to be the most
satisfactory method of guiding homing missilels - a fact established by engineers

through many years of design experience rather than by analytical proof. In

proportional navigation, an attempt is made to mechanize the following equation:

where ; is the missile angular turning rate and X is the line-of-sight angular
rate referred to inertial space. N' is denoted as the "Navigation Ratio," and
again, the range of acceptable values has been developed mainly through
experience. It is interesting to note that recently it has been rigorously deter-
mined by means of modern control theory that proportional navigation is indeed
optimal in that for unconstrained control effort, the miss distance at intercept
is minimized in the mean-squared sense. The correspondence between
proportional navigation and optimum control has been demonstrated by Bryson,
Ho, and Baron, 1 Janus 2 and Speyer, 3 among others.

The purpose of this study is to cast the simplified homing problem solved
by Speyer in the above referenced report as a "minimum error regulator"
problem. This problem is solved in closed form by Ogata, 4 who used the
generalized quadratic index as a performance criterion. It will be shown that the
Ogata method yields Identical results to th~e Speyer variational solution, and can

thus be verified to be applicable to the problem. The problem is then extended to
include autopilot lag, and a new solution obtained, from which several interesting
conclusions can be drawn regarding the form of the control law and the nature of
the navigation ratio.

1Y. C. Ho, A. E. Bryson, S. Baron, "Differential Games and Optimal
Pursuit-Evasion Strategies," IEEE Transactions on Automatic Control, AC-10,
No. 4, October 1965, pp. 385-389.

2J. P. Janus, Homing Guidance, Aerospace Corporation, El Segundo,
California, Report No. TOR-469(9990) -1, December 1964.

3J. Speyer, Optimal Control Theory and Biased Proportional Navigation,
Raytheon Corporation, Bedford, Massachusetts, Memo SAD-330, November
1967.

4K. Ogata, State Space Analysis of Control Systems, Englewood Cliffs,
New Jersey, Prentice-Hall, 1964, pp. 547-557.
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Section II. THE MINIMUM ERROR REGULATOR PROBLEM

th
Any linear dynamical system of the n order can be expressed either as

th
an n order differential equation or a set of n first order differential equations.
The latter is known as the state formulation,' and is used herein, since it lends
itself to matrix-vector notation and manipulation. It will be assumed that the
system differential equation is given by:

x=Ax + Bu ; x(0) =C

where

x = n dimensional column state vector

u = r dimensional control vector

A = n x n matrix

B = n x r matrix

and where the following index is to be minimized:

T T
J(C,T) = x* (T)Px(T) + f x* (t)Qx (t)dt + f u* (t)R(t)u(t)dt

0 0 -- .--O-
Terminal State Control cost

state weighting
weighting

where the * symbol denotes the conjugate transpose of the vector, or simply the
transpose for real vectors, and P, Q(t), R (t) are matrices of appropriate
dimensions.

Ogata shows that the optimum controller for such a system can be
obtained by solving the nonhomogeneous matrix Riccati equation:

ds
= -sA - A*s + sBR-I (0) B:c s = Q(0)dt

If the matrices A and B are constant, i.e., if the system is stationary, the
above matrix equation can be solved in closed form for the time T:
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s(T) = ([0 21 (T) + 022(T)P][Ol1 (T) + 0 12 (T)P-I}

where the Oi are obtained from partitioning the mat-ix

MT A I I(T) q5 12 (T)e
(P2 T) 022 (T)

and M is defined as

M-A BR.1(O) B*7

Q(0)gJ
from which it can be seen that M is known from the problem statement and the
performance index.

Once s (T) is known, the optimum control vector can be obtained from
the expression

Uop(t) F -(T -t) x(t),

where

F(T - t) = R 1 (t) B* s (T - t)

In block diagram form, the optimum controller can be depicted as in Figure 1.

+uopt(t) SSE

F(T - t)

J ;•=Ax +Bu

FIGURE 1. OPTIMAL CONTROL SYSTEM
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The solution of the subject problem can then be summarized as follows:

') From system state equations, and the given performance index, the

following matrices are known:

A, B, P, Q, R

2) The matrix M can be formed from above

M= IBR-- B*J

Q( I A* _

MT

3) From knowledge of M, e can be found. There are several

methods for computing this, but the use of the Laplace transform is

often the most convenient. This method involves the relationship

£[eMT]= [sI- Al-,

where s is the Laplace operator and I the unit matrix.

MT
4) Once e is known, all of the Oij are obtained from the relation

MT 01, (T) 1 T
e = _--------

From this, s(T) can be computed:

s(T) :{[0 21(T) + 0 22 (T)P][n 11 (T) + 12 (T)P]-}

5) Once s(T) is known, uopt M and F(T - t) are immediately
obtainable:

F(T - t) = R-1 (t) B* s (T - t)

u opt(t) =F(T -t)x(t)

The optimum system thus mechanized will minimize the given quadratic index

In the solution interval 0 -5 t -5 T. It should be noted that the optimum solu-

tion is given in terms of time-to-go (T - t) rather than elapsed time t.
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Section III. OPTIMUM CONTROLLER FOR SIMPLIFIED HOMING SYSTEMS

The conventional overall homing loop can be depicted as shown in
Figure 2 and can be readily rearranged with target acceleration as an input in
the manner of Figure.3.. If the dynamic lags of the seeker, autopilot, and
missile are neglected, the very simple model of Figure 4 is obtained. This
figure also includes an exponential decay model for target acceleration, this
being the model used by Speyer. 5 With reference to this figure, the problem
can be stated as follows: Given the observable states Yd' Yd' and yt, the con-

trol vector is determined that will minimize the miss distance at intercept
only, i.e.,

Yd(t) I = T = minimum in the mean-squared sense subject to a constraint
on available control effort.

LBOORESIGHT ERROR - LINE OF SIGHT RATE

DISTURBANCE 
Y

.,- -• SEEK ER] GAIN --- *ACTUATO R AUTOPLO T

FIGURE 2. TYPICAL HOMING BLOCK DIAGRAM

The state equations can be written directly from Figure 4:

xI = X2

x3 = -2ux 3

5J. Speyer, op. cit.
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IC

"" d Yd

nI I

FIGURE 4. SIMPLIFIED HOMING SYSTEM

or, in vector-matrix form * = Ax + Bu

xl 0 1 0 x1  0

x 2 = 0 0 g x2 + - n

A3 0 0 - 2u X3  0

The general form of the minimum error regulator law is

T

J = x*(T)Px(T) + f [x* (t)Q(t)x(t) + u* (t)R(t)u(t) ]dt
0

and must be adapted to the specific problem: A single vector x1 (Yd) is to be

minimized at intercept only. Also, the control vector has a single component,

and the control constraint matrix reduces to a scalar. These conditions can

be achie-vad by defining the P, Q, R matrices as follows:

1 0 0 0 0 0

P 0 0 0 Q= 0 0 0

0 0 0 0 0 0

R = X = scalar;

therefore

R- 1
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With these definitions, the index J becomes

T
J = x1

2 (T) + X f n, 2dt
0

The M matrix can now be written, since all of its components are known.

0 -1 0 0 0 0

0 0 -g 0 g0/X 0

M 0 0 2 u 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 g -2v

To compute e , the matrix [sI - M] is needed

s 1 0 0 0 0

o s g 0 -g2A 0

0 0 s - 2u 0 0 0fsl -M] =

0 0 0 s 0 0

0 0 0 -1 s 0

0 0 0 0 -g s + 2u

This matrix must now be inverted. Since it is almost in upper triangular
form, the simplest method of inversion is to append a unit matrix and transform
the combined matrix to upper triangular form by means of elementary trans-
formations. This step yields

8



s I 0 0 0 0 1 0 0 0 0 0

0 s g 0 -g 2/A 0 0 1 0 0 0 0

0 0 s- 2u 0 0 0 0 0 1 0 0 0 =[sI- MI

0 0 0 8 0 0 0 0 0 1 0 0

0 0 0 0 s 0 10 00 0 /s 1 0

0 0 0 0 0 s + 2u 0 0 0 gIs

The inverse is obtained by solving the above matrix as six equations in
six unknowns, using each of the six column vector's to the right of the dashed
line in turn. Since the coefficient matrix is upper triangular, this step is
rather simple, and the inverse becomes:

1 1 g g2 xgA 0
s -s s'(s - 2u) -- - "

0 2. g2/X 0
s s(s - 2) s3 s 0

0 0 0 0 0[sI - M]8=S- 2u

0 0 0 1 0 0
s

0 0 0 1 110

0 0 0 -2--SS - g 1
2 (5+ 2u) s(s + 2u) s + 2u

The correctness of the above matrix can be verified by observation of the
product

[sI - M]-P[sI - M) = I

9



The oan now be obtained from the above matrix as follows:

1 1 g
s ss 2u)

1 _ -g=,(t =£- o ---
s s(s - 2u)

1
0 0

s -

-- -- 0
4 s

g20 0

012(t) S3 s' L2
• 21(t) = £'-• 0 0 0

0 0 0

1

0 0 0

1 0s

0P22(t) = M 0S2 S

s 2 (s + 2u) S(O + 2 0) s + 2j

The next step requires computation of s (T - t). However, since
s (T - t) = s(t) at t = T - t, we may compute s (t) first. The multiplications

0 12P and 0 22P can bc performed before taking the inverse transform, since P is

a number matrix.

10



1 0
S4 s

012P =1 1_ 1 0 02P•
_ _

0 0 0 g

Ss2 (s + 2u) 0

0 2 1 (t) + 0 2 2 (t)P 2-1[021(s) + 0 2 2(s)P]

-7 0 0 h 0 0s

=1- 0 0 = i 0 0
S

g

s 2 (S + 2u)

s 3 g2 / 1 g
s4 --7 s2(s - 2u)

0 11(t) + 4 12(t)P = 3 -s1 -g20

0 0 1
s - 2u

a b c

d e f

0 0 k

The a... k in the above matrices are symbolic representations for the inverse
transform of the actual matrix elements. In order to obtain s (t), the matrix
1011 + 0 12P) must be inverted. Performance of this step on the symbolic
representation yields:

ake -akb baf - cae

[011 (t) + 0 12 (t)PI' - ak(ae -db) -akd - a2k acc - a2f

0 0 a(ae db)I

11



Then 9 (t) can be obtained by multiplication:

akeh -akbh (baf - cae) h

1
s(t) = ak(ae - db) akei -akbi (baf - cae)I

akeJ -akbJ (baf - cae) J

The function F(T - t) can now be readily computed, since

F(T - t) = R-1 B*s(T - t) (0 -g 01s(t)

1
F(T - t) - ?ak(ae - db [-akeig akbig -(baf - cae)ig]tAa~e b T t

X bd) Fe b - k Ce] t = T - t

The actual vector F(T - t) can be obtained by evaluating the inverse transform
of the above elements:

.a 6X b = £)2-= -t

Z£1( 9 2)= __&(I - e2ut);2 s - 2u), 2u' 2u

k-i ) = e -= 1-1t =

Introducing above expressions into the F(T - t) vector, and substituting for t:

t = (T-t) =t

go

12



2ut ~2vt g
9t go 9 2ut 0 +1 e go+ e

NOt Ft) 1k+-lt3g'4 2ut

~ -g t, .2.to go+ - o

3 go L etgo

The optimum coatroller uopt = -F(t go) (x1, x2 x3 ]* or,

X1

u = -N'[-C0 -C2 -C3] x2opt

X3

or

I X

Uopt = N'[C1 C2 C0] X2

X3

where

"-'gt 3
N 3x + g-tgo

C I =gtgo 2

C2 I

2ut 2ut -2ut
2vt e go+ 1- e go 2ut + e g0

03 = 2ut
2 go 2 4u 2t go2

4ue ~t go

13



In terms of the original system parameters, the expression for u can be

written:

-2ut

Uopt n, N' Yd + I +
gd) +0(9 4U2t 20

The above results are identical to those obtained by Speyer 6 by direct use of

classical variational methods. Thus, the two techniques are equivalent.

If the control effort constraint is removed, I. e., X is made zero, the

term N' becomes

3g2t 2
N'= go=3

•go2

thus reducing to a conventional navigation ratio. Also since the angle A is

approximately equal to the ratio
Y d

A= R

where R = missile to target range, the following is obtained:

A = R2  "

but R = -V where V is the closing velocity, andC c

R=Vt
c go

Substitution into A equation yields:.(
A -Vt ~d+

c go go/

'Ibid.

14



or

This can be substituted into n1 equation to render

V -2tt

n, 9 + N'4 t2go n

4- go j

which, when X = 0, is recognized to be the conventional proportional navigation
law with a bias correction for target acceleration.

The results to now are not new, as indicated by the previously noted
references. The derivations serve as an independent verification of prior
work, and also verify the adequacy of the method of solution used. This
mothod will be applied in the next section to the same system, augmented by
an autopilot lag.

15



Section IV. OPTIMUM CONTROLLER FOR HOMING SYSTEMS WITH AUTOPILOT LAG

Figure 5 depicts the same simplifled hom-ing system of the previous
section, with the addition of a single time constant r between achieved andcommanded accelerations. The state equations clan be obtained from the

figure as:

X1 =X2

X2 = gX 3 - gX 4

3 -2ux 3

n T

!0

which in vector matrix form, become

x1 0 1 0 0 x, 0

X2 0 0 g -g X2  0"+ n

X3  0 0 -2v 0 X3  c

x4 0 0 0 -W X4

where

T!

7.•

The generalized index J

T
J = x* (T)P x(T) + f (x* (t)Q(t)x(t) + u* (t)R(t)u(t) ldt

0

is reduced to the desired form by defining

16



-Ii 0

4. Wu
N1 w

0u-

Cu

wE-

U z

xCm

Uý-U
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1o 0 0J

0 0 0 Q 0 1 4x4R =X =scalar

0 0 0 0

0 0 0 0]

which yields the same form as before:

T
J xi(T)2 + Xf n 2dt

0

The matrix M is obtained next:

0 -1 0 010 0 0 0

0 0 -g g 0 0 0 0

0 0 2u 0 0 0 0 0

a2

M 0 0 0 w 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 g -2u 0

0 0 0 0 0 -W

from which [sI - M] can be formed:

18



s 1 0 0 0 0 0 0

0 s g -g 0 0 0 0

0 0 s - 2u 0 0 0 0 0

o2

o 0 0 s-C 0 0 0 W2

[sI- M] =

0 0 0 0 s 0 0 0

0 0 0 0 -1 s 0 0

0 0 0 0 0 -g s+ 2 u 0

0 0 0 0 0 g 0 S+w

This matrix is almost triangular and can be ri.ther easily inverted, by the method
outlined in the previous section. This inverse is given by

S1 - g g - ' g W 2

0 1 05S i Mf- 20 S( - L) XS (S C)(is W) XSIss- W) (SW) NS (SLA) (S W)

0 0 0- u 0 0 0s -2u

I N -0 (.q X) Xs(s W) )(S W) X.S -W) (S *•)..
s 4) - - ,I o { *•' )

I S1

0 0 0 f -

1 1
I U 0~4 (4 4 0

0s A(s. 2u) s(s 2u) s- 2u

S[ "g "g9

0 0 i, I 1 •

s is S(S S.

19



Correctness of this matrix can be verified by multiplying it by [sI - MI and
observing that the unit matrix results. The Olj are obtained as before from the
above matrix, since

[si - M = 1'(s) 012(s)

021(s) 022(S)

The next step In computing s ( t) requires formation of the expressions

[0 21 (t) + t 22(t)PI

[011(t) + 012(t)P]

Since P is a number matrix, the above expression can be formed before inverse
transformation of the 0 i:

01~

1 0 0 0

[4021(t) + 022(t)P] -

s- - 0 0 0
s[t(s + 2u)-g

2 + ) 0 0 0"s ' ( s ' + Wo ) F

h 0 0 0

1 0 0 0

j 0 0 0

k 0 0 0

20



g2 W 2  9 g-

7 a(s + W) s (s - 2u) S--- - W)
•, - s2(s-2u) s•(s-w)

[011(t) + 0 12(t)Ps

11s 2v

_A w (B + 0 0 -_"s 2 ks-_ ) (S+T )

Let s(t) of the above matrix be denoted symbolically:

all a 12  a13  a14

a 21  a 22  a23  a 24

0 0 a 33  0

a 41  0 0 a44

This matrix must now be inverted, since s(t) requires ('P11 + 0P12P)-. This
inverse is shown on the next page, where the A and B are defined as
indicated:

A, a22a1 l - al 2a21  A a23a1 l - a 2 1a 13
all A2ali

A3 = a 24all - a 21a 14  A4 =-- a 41all all

I A5 = - a4 a1a2--- ( a4 a1a 3
A5 allt6 all

A7 = a 44all -a41 a4 A8 - a 41

all all

B1 = AIA 7 - A5A3  B2 = AlA 8 - AsA 4
A1  A1

B - A5  
B4 A5A2 - A 6A,

A1, Aa33

21
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The correctness of this inverse is extremely difficult to check by the

methods previously used. However; it can be easily checked by assuming an

arbitrary, nonsingular numerical form for [ ol + 0 12P ] with zeroes in the

appropriate positions. The inverse can then be computed via the general form

of page 22 and then multiplied by the original matrix. If the unit matrix results,

the generalized inverse can be assumed to be correct. The matrix

1 2 1 1

2 3 1 1

0 0 1 0

1 0 0 2

is of the required form, and the inverse, as computed from the formula, is

4 2 1
3 3 3

1 2 1
3 3 3

0 0 3 0

2 1 1

- -T3 3

which is readily observed to be correct.

For simplicity, [€ 1p + 0 12P]- 1 will be denoted by

C, C2  C 3  C 4

since only the first row will be needed for s(t). The latter thus becomes

23



hC1  hC2  hC3  hC 4

iC I iC 2  iC3 iC4

S(t) JCj JCC JC3  JC4

kCC k'C2  kC3  kC4

and since

F(T - t) - R-IB*s(T - t) - 110 0 0 wls(T - t)

it becomes

F(T-t) = wkC2  Cs _! -L, X x _.]t = (T t)

The optimum controller uo can now be computed fromopt

u = -F(T - t) x2opt

X3

x4

The remaining task consists of obtaining F(T - t) in terms of the original
system parameters. To this end, the gains C in terms of the a,, are first
computed:

= a 22a 44

a44 (aj1a22 - a12a21) - a41(al 4a22 - a12a 24)

-a 1 2a 44
C2 a (a11a22  - a12a2 l) - a41(a14a22  - a12a24)

a44/a 33 (a12a23 - a 22a13 )
"a44 (a 11a22 -a 12a21) - a41 (a14a22  a12a 24)

4 = a12a 24 - a 22a14

a442(a4a22  IL12a2l) - a41 (al 4a22  al 2a24)

24



The vector F(T - t) can now be restated as

wk/X
F(T - t) =

a44 (alla 22 -a 12a21) - a41 (a1 4a22 - a 22a 24)

[a22a44 -l2a44 a44 (A12a23 - a22EL3) (al2a2 - a22E '
aa a 33

The values of the a and of k are next obtained by inverse transforming the
ij

appropriate elements:

a,,= -1 s3 (s - ;)s+ w o) ..w

a11 = {1+ 2-'• -.2wt + et - ewj
a12 ~ ~ ~ . 2 i(~)=[:g ,

a13 = - (s- 2~ = 1v 2u

as(s - w)(s +
Sg 2  g2  wt g2  -7

all 2--= _ -- e " e

a21 = +. •2-•e 2 w•X2-- e

a2 2 = -1(S) = 1

at

a3  2(S- 2u 2u-

aL14 = s2]s 7g I( + -ewt

IW 225

I



a33  -2] e= e

a41 = 2£ WIo2(s - _o(S + W

gt g w~t g -w~ta41 = -2 e + g-We

X 2wX 
W

a44  
[ ] Wt

k = L" - i = 1 - -
s 2(S + W I

Redefining (T - t) as t and inserting t for t in above expressions, we obtain

(go)g e W G1  G 3 G3  G41

e go(M) e gM(1 ) /

where

r -wot

I= w3 X + 2w3 g2 tgol + 6wet - 6w 2ogtg02 -12wog2tgoe e 0

got
G 1 = e go; G2 = t e

G 3  eWt go.gtgo - g -2ut e )

2u 4u" 4., e

G4 = e Wtgo ( ge -Wtgo

26o W2

26



wt
The common e 90 terms cancel. Additionally, if the expression is

multiplied and divided by gt go2, the solution form becomes:

F(tgo)

F 2' /4-- 2ut
go gtg e gotgo

Ltgo go owtt e +1+
F~tI =-N~gg

W o 2 W t
e gtgo 0o2

where

wtW

I -6wg2tg03 + 6-292tgo2 (- e g

and (I) is as previously defined.

The optimum controller u otis computed fromgopt

beomt

Uoptu = - =n

go go~

go go
becomet

-e goo go)

27



e'got go

tN'e + .+

(Y Vgo tg +

but from the previous section, it was shown that:

and therefore n becomes

22uYoN t g

" N' d +

t +ed

-Ng° go

The first three terms are identical to those previously obtained for the
represent biased proportional navigation. The last

term is an additional bias term due to the, autopilot lag, and it is interesting to
note that it is Identical in form to the target bias term. It should be noted that

when the lag is removed (i. e., 'r- 0 or ,w -- oo), the last term drops out,
since

-2ut

/rn + g )-Wt
wt + e

gor

N2



The nature of N', the navigation ratio bears further study. This quantity
was defined on page 27. When divided by 2w 3 , it can be rewritten

-g3t 2/t -w

3g+ t 6gltg0e go 3g 2t 3g2 3ge-2wt go
3X +g ts~ g __ _ -+go ..... e g

w2 W2 W 2w3  20J

If the autopilot lag is eliminated by letting w -- -" 0), the above
reduces to:

3 g2t go

3N + g2to 3

which is identical to the results previously obtained. Thus, the entire optimum
controller reduces to the previously derived quantities when the lag term is
eliminated. Where w is finite, however, it seems to play a significant part in
the value of N'. In order to observe the behavior of N' as a function of time
and w, let X = 0, i.e., remove the constraint on control effort. If this is done,
the ge terms drop out, and N' becomes

3t 2/ -wt

3t 3 90 (1 - e go)
S -Wtgo

3t 6t e go 3t -2wtgo
3 +-_... go 90 -- go 3e+

go w 2w 3  2w 3

For very large values of t the above converges to

3t 3
S~ ~~N' - g

t 3
go

For typical values of t, the above equation was programmed with several

values of w used as a parameter. The resulting plots of N' versus t are showngo

in Figure 6, from which one concludes that for significant autopilot time con-

stants, N' deviates considerably from the limit value of 3, and is also
nonstationary.
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Section V. CONCLUSIONS

It has been shown herein that the Ogata solution of the minimum error
regulator problem can be used to solve the homing problem. This was done by
independently solving a previously solved problem and obtaining identical results.
Thi subject method of solution is (at least in principle) straightforward. For
high order systems, the computational aspects become menacing, but could be
handled by use of the digital computer.

The effect of autopilot lag was also studied using the subject method, and
several significant conclusions can be reached:

1) The navigation gain is a nonstationary function that varies
significantly with the autopilot lag.

2) The optimum controller requires an additional bias term appended
to the conventional biased proportional navigation vector. This
term is identical in form to that resulting from target acceleration.

3) The added term requires that the actual missile acceleration be
measured, since this is a required state. However, in cases where
this state is not explicitly measured, the commanded acceleration
could be passed through a synthetic time constant. The latter would
be tailored to match autopilot response, and thus an approximate
measure of n1 could be obtained.
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